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Abstract
The phonon spectrum of C3N4 with defect zincblende-type structure (δ-
C3N4) was calculated by density functional theory (DFT) techniques. The
results permit an assessment of important mechanical and thermodynamical
properties such as the bulk modulus, lattice specific heat, vibration energy,
thermal expansion coefficient, and thermal Grüneisen parameter. The thermal
Grüneisen parameter of δ-C3N4 is calculated to be about 1.19 at 300 K,
comparable to that of diamond. The coefficient of linear thermal expansion
of this structure is calculated to be about 2.2 × 10−6 K−1 at room temperature.
The thermal conductivity coefficient of δ-C3N4 is also estimated using Slack’s
theory to be as high as about 216 W m−1 K−1.

1. Introduction

In the field of materials science, much attention has been paid to new hard materials with
high thermal conductivity [1, 2]. Carbon nitrides have attracted the attention of both
theoreticians [2–8] and experimentalists [9–13]. Recently Morelli and Heremans have used
Slack’s [1] model to calculate the thermal conductivities of α-, β- and spinel-C3N4 [14]. They
found that the thermal conductivities of these carbon nitrides all exceed 100 W m−1 K−1.
The value for β-C3N4 is as high as 520 W m−1 K−1. Liu and Wentzcovitch predicted the
metastable form of C3N4 with defect zincblende-type structure (δ-C3N4), which contains only
one molecule (seven atoms) in a cell [15]. The structure of δ-C3N4 has a C–N network
composed of CN4 tetrahedra. The calculated bulk modulus for this form is 425 GPa, close
to those of β-C3N4 and diamond. Martin-Gil et al [16] have prepared carbon nitride using a
chemical precursor route and identified these crystals to be δ-C3N4. The preparation method
creates the possibility of large-scale production of δ-C3N4.
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A full characterization of the physical properties of carbon nitride is important for
applications. Experimentally it is rather difficult to prepare pure samples with relatively large
particle sizes. Therefore, theoretical methods, especially first-principles techniques, can help.
Rignanese et al [17] calculated the vibrational modes at the � point of the Brillouin zone (BZ)
and the dielectric properties of different forms of C3N4. Recently Mattesini and Matar have
calculated some mechanical and electronic properties of carbon nitrides, including δ-C3N4 [18].
In this paper we report first-principles calculations of the phonon spectrum for δ-C3N4. The
dispersion curve and the partial phonon densities of states (PDOS) for both C and N atoms are
reported. Using the quasi-harmonic approximation (QHA), the thermal properties, including
the thermal expansion coefficient, of δ-C3N4 are calculated. The thermal conductivity of
this compound is estimated using Slack’s theory. We hope that this information will help to
further an understanding of the relationship between the crystal structure and mechanical and
thermal properties of carbon nitride and related materials. Moreover, we hope it may benefit
the developments of new materials for industry.

2. Details of the calculations

The calculations were carried out using the first-principles molecular-dynamics computer code
VASP (Vienna ab initio simulation program) [19–21]. Calculations for structural optimization
were carried out for a fixed volume with relaxation of the atomic positions. This procedure
was repeated for several volumes in order to obtain a set of total energies as a function of the
cell volume. From these data the equilibrium volume and bulk modulus were obtained by a fit
to a second-order Murnaghan equation of state [22].

The calculations are first performed for the electronic structure from first principles.
Then the interatomic forces are obtained via the Hellmann–Feynman theorem. The phonon
frequencies and eigenvectors were obtained by diagonalization of the dynamical matrix.
Details of the methods can be found in [23] and [24]. Calculations were applied to a cubic
2 × 2 × 2 supercell, which consists of eight primitive unit cells (56 atoms). Periodic boundary
conditions were imposed. The positional parameters of the atoms have been fully optimized.
Selected atoms were displaced slightly (about 0.01 Å) away from their equilibrium positions,
and the corresponding interatomic forces were calculated. From the calculated forces and the
displacements the interatomic force constants were obtained. Using these force constants, the
phonon frequencies were determined.

This method does not account for the effect of the macroscopic electrostatic field that arises
for certain longitudinal optic (LO) modes in the long-wavelength limit (k → �). This field
lifts the transverse optic and longitudinal optic (LO–TO) degeneracy of the IR-active modes.
Following [25–27] we corrected for the effect of the macroscopic field and the calculated
frequency shifts of the LO modes. For the determination of the LO frequencies the inter-
planar force constants were calculated using a 4 × 2 × 2 cell (containing 16 primitive cells),
which has a long a-axis (about 13.2 Å). The phonon dispersion curves were calculated along
several high-symmetry directions in the BZ. The calculations show that the vibrational modes
at � have almost the same frequencies as those obtained from a 2 × 2 × 2 supercell except
for those modes with LO–TO splitting. The phonon density of states (PDOS) was obtained by
linear tetrahedron integration of the phonon frequencies over a 10 × 10 × 10 k-point mesh.

The electronic structure calculations were carried out in the local density
approximation (LDA), using the projector-augmented wave method [28, 29]. The electronic
wavefunctions were sampled on a 4 × 4 × 4 k-point mesh in the BZ of the 2 × 2 × 2 cell.
Additional calculations were carried out for an elongated cell using a consistent k-point mesh
as far as possible. The kinetic energy cutoff on the wavefunctions was 945 eV (69 Ryd).
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Table 1. The lattice parameter (a), coordinates of nitrogen atoms (x), and bulk modulus (B) for
δ-C3N4 from our calculations compared with those from literature (prediction versus experiments).

Method a (Å) x of N d (C–N) (Å) B (GPa)

Theoretical
LDAa 3.4097 0.2544 1.47 428
LDAb 3.43 0.254 1.48 425
LDAc 3.44 430
LDAd 3.3988 0.2549
LDAe 3.4087 0.2553 425.9

Experimental
HRTEMc 3.52
EXLFSc 3.41 1.47

a This work.
b Reference [15].
c Reference [16].
d Reference [17].
e Reference [18].

Convergence of the total energy as well as of frequencies with the number of k-points and the
plane-wave cutoff has been checked.

In the quasi-harmonic approximation (QHA), the Helmholtz energy (F) is given by

F(V , T ) = U0(V ) + 1
2

∫
h̄ωg(V , ω) dω +

∫
kBT ln

[
1 − exp(−h̄ω/kT )

]
g(V , ω) dω (1)

where the first, second, and third terms are the total lattice energy, zero point, and vibrational
contributions, respectively. U0(V ) denotes the total energy, ω denotes the phonon frequencies,
g(V , ω) denotes the PDOS, kB denotes Boltzmann’s constant, and h̄ denotes Planck’s constant.
The values of U0(V ) and the PDOS are calculated for several volumes, and F(V , T ) is
interpolated to obtain the zero-pressure volume Vzp(T ). The summation (integration) runs over
the Brillouin zone (BZ). In general, the QHA gives reliable results for temperatures well below
the melting point, which is confirmed in several studies [25, 27, 29]. From equation (1) and
standard thermodynamics, the thermal properties, including internal energy, entropy, specific
heat, thermal expansion coefficient, etc can be obtained. The phonon densities of states have
been calculated for seven different volumes (covering a volume variation of about 12%) with
optimized structures to obtain the thermal properties from equation (1).

3. Calculated results for δ-C3N4

3.1. Structure optimization

The crystal structure of δ-C3N4 is cubic with space group P 4̄3m (number 215 in [31]). There
is only one formula unit per unit cell. The crystal structure of δ-C3N4 is completely defined
by the lattice parameter a and the positional parameter x of the N atoms.

There are several calculations on the crystal structure and bulk modulus of δ-C3N4, as
summarized in table 1. Our results, obtained just by minimizing the total energy, are also
listed. Experimental results are also included for comparison [14]. As shown in table 1,
the calculated lattice parameters from different methods are also in good agreement with the
experimental values [14]. Our value of the bulk modulus is also in good agreement with the
former calculations [14–17]. The bulk modulus B (428 GPa) is close to that (437 GPa) of
the β-C3N4 obtained by Liu and Wentzcovitch [15] and that (about 442 GPa) of diamond as



3030 C M Fang and G A de Wijs

Figure 1. Calculated phonon dispersion curves along high-symmetry directions in the BZ for
δ-C3N4.

Table 2. Calculated frequencies f of the optical modes of C3N4 at the �-point of the primitive
cell. The LO modes of the infrared-active species are in parentheses.

Dominant
Species f (cm−1) a f (cm−1) b eigencharacters

T2 (IR) 730 (752) 738.3 (752.8) C, N
T1 733 741 C, N
T1 831 828.9 C, N
A1 993 990.5 N
T2 (IR) 1035 (1152) 1036.4 (1159.8) C, N
E 1095 1103.7 N
T2 (IR) 1250 (1299) 1254.5 (1308.0) C, N

a This work.
b Reference [17].

calculated by Cohen et al [3]. The C–N bonds in δ-C3N4 (1.47 Å) are close to those (1.45 Å [5])
in β-C3N4 [5, 7], but are much shorter than the C–C bonds in diamond (about 1.54 Å) [2, 30].

The electronic band structure calculations show that δ-C3N4 is an insulator. The calculated
energy gap is about 2.8 eV, in good agreement with the former calculations (2.86 eV) by
Mattesini and Matar [18].

3.2. Phonon spectrum

The primitive cell of δ-C3N4 contains one formula unit (seven atoms) giving rise to a total of
21 phonon branches (three acoustic modes are included). As shown in figure 1, which shows
the dispersion curves along the high-symmetry lines in the Brillouin zone (BZ), the 21 phonon
branches fill the entire energy range, leaving no gap in the PDOS. The optical branches are at
high frequencies (>400 cm−1).

The phonon modes at � for δ-C3N4 with space group P 4̄3m (number 215 in [31]) are
classified as

�(k = 0) = A1(R) + E1(R) + 3T2(IR) + 2T1 (2)

where R and IR correspond to Raman- and infrared-active, respectively. The calculated
frequencies at � and the dominant contributions from the ion species are listed in table 2.
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Figure 2. Partial and total PDOS for δ-C3N4.

Figure 3. The internal energy E (full curve) and Helmholtz free energy F (dashed curve) of δ-C3N4
calculated from the phonon density of states at equilibrium volume using the QHA. Energies are
per formula unit per mole.

The crystal symmetry implies two Raman- and three IR-active modes. The calculated values
are in good agreement with those calculated by Rignanese et al [17]. For the convenience of
the reader the frequencies are listed in table 2.

Figure 2 shows the calculated partial and total PDOS of δ-C3N4. The total PDOS spans
up to about 1332 cm−1. The partial density of states of the C atom is similar to that of the
N atoms, due to the similar masses of both atoms. In fact, most of the vibrational modes,
except those with A and E eigencharacters, have contributions from both C and N atoms, as
shown in table 2.

3.3. The specific heat and vibrational entropy for δ-C3N4

The calculated zero-point energy for the equilibrium volume (a = 3.4097 Å) of δ-C3N4 is
1122.47 meV/fu (fu represents a C3N4 formula unit).

Figure 3 shows the calculated internal energy E and the Helmholtz free energy F at the
equilibrium volume as a function of temperature. The value of F decreases rapidly from about
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Figure 4. The specific heat Cv and vibration entropy S of δ-C3N4. Cv and S are in the same units.

Figure 5. The linear coefficient of thermal expansion α of δ-C3N4.

60 K, while the absolute value of E increases rapidly from about 120 K. The calculated values
of the Helmholtz energy F for δ-C3N4 are about −2.01 and −68.41 kJ mol−1 at 300 and
1000 K, respectively. Figure 4 shows the specific heat Cv and entropy S at the equilibrium
volume. The Cv at 300 and 1000 K are about 56.19 and 152.54 J mol−1 K−1, respectively.
The calculated values of the entropy S for δ-C3N4 are about 68.42 and 158.24 kJ mol−1 at 300
and 1000 K, respectively.

From F(V , T ) (equation (1)) we also calculate the zero-pressure volume (and lattice
constant) as a function of temperature. At 0 K, the lattice constant is 3.4235 Å, which is
only slightly larger (0.4%) than the lattice constant obtained from straightforward total energy
minimization. This difference is entirely due to the zero-point motion of the atoms. At 300
and 1000 K the lattice constants are 3.4242 and 2.4356 Å, respectively.

The calculated linear lattice thermal expansion coefficient α(T ) = [da(T )/dT ]/a(T ) =
[dV (T )/dT ]/[3V (T )] of δ-C3N4 is shown in figure 5. It increases almost linearly with
temperature to approximately 600 K. Above 600 K the increase is gradually reduced. The
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calculated linear coefficients of thermal expansion (CTE) are 2.2 × 10−6 and 6.5 × 10−6 K−1

at 300 and 1000 K, respectively.
The thermal Grüneisen parameter, which is very important in materials science, is defined

as γth = (Vmαv B/Cv), where Vm is the molar volume, B the isothermal bulk modulus, αv the
volume thermal expansion coefficient (αv = 3α), and Cv the heat capacity. At zero pressure,
the calculated values are γth = 1.194 and 1.299 for 300 and 1000 K, respectively. These values
are close to the corresponding data for γ -Si3N4 (about 1.194 and 1.346 at 300 and 1000 K,
respectively) [27], and to that of diamond (about 1.19 at room temperature) [32]. These values
are significantly larger than those (about 0.70 at room temperature) for β-Si3N4 and β-C3N4,
though it is generally believed that the Grüneisen parameter for the zincblende-type structure
is close to that of β-Si3N4-type materials [1, 14].

The maximum thermal conductivity for δ-C3N4 can be estimated from Slack’s
equation [1, 14]

κ = AM̄δθ3

γ 2T n2/3
(3)

in which A is a constant (A = 3.04 × 107 W mol kg−1 m−2 K−3), M̄ (kg mol−1) the mean
atomic mass, δ3 (m−3) the average volume of one atom in the primitive unit cell, θ (K) the
Debye temperature, γth the Grüneisen parameter, and n the number of atoms in the primitive
cell.

The Debye temperature can be calculated from the calculated phonon DOS. At room
temperature the Debye temperature θ for δ-C3N4 is about 1680 K, close to that of β-C3N4

(1778 K) [14].
From equation (3) we obtain the thermal conductivity for δ-C3N4 to be about

216 W m−1 K−1, which is close to that of β-Si3N4, but is smaller than that of β-C3N4 [14].
As shown above, the material is calculated to be a hard insulator with thermal conductivity

close to that of SiC and AlN. Therefore δ-C3N4 may be used as a heat sink material for thermal
management. Furthermore, the low coefficient of thermal expansion (CTE) makes δ-C3N4

potentially useful for bonding chips.

4. Conclusions

δ-C3N4 has a bulk modulus (about 428 GPa) close to that (442 GPa) of diamond. The
phonon spectrum and density of states for δ-C3N4 have been calculated using a first-principles
technique. The optical branches are at rather high frequencies (above 400 cm−1). The linear
coefficient of thermal expansion is about 2.2×10−6 at 300 K. The thermal Grüneisen parameter
is about 1.19 at 300 K, which is close to that of diamond. The thermal conductivity has been
estimated to be about 216 W m−1 K−1.
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